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The generalized Lagrangian-mean (GLM) formulation of Andrews & McIntyre 
(1978a, b )  offers alternative physical concepts and possible saving of effort in 
calculation, as compared with the more conventional Eulerian-mean approach. 
Though most existing applications of this theory concern waves on weakly sheared 
mean flows, i t  is also suitable for study of waves in strong shear flows. The 
hydrodynamic stability of parallel shear flows is examined from this point of view. 
An appreciation is gained of the roles of Stokes drift, pseudomomentum, energy and 
pseudoenergy in this context, such understanding being a necessary prerequisite for 
future developments. Several known results of linear stability theory, including the 
inflexion-point and semicircle theorems, are concisely rederived from the GLM 
conservation laws. 

1. Introduction 
There is a wide class of fluid-flow phenomena that exhibit motions having both 

a mean and a fluctuating part. Typically, weakly nonlinear oscillations tend to induce 
weak mean flows, and slowly varying mean flows may produce slow changes in wave 
properties. Also, strong mean shear flows are often linearly unstable to wavelike 
disturbances, which may grow and modify the mean flow. The understanding of 
nonlinear processes that couple mean and fluctuating motions presents a considerable 
challenge. Until recently, such problems have mostly been tackled via the Eulerian 
equations of mean motion; but Andrews & McIntyre (1978a, b,  hereinafter referred 
to as I and 11) have developed, in very general form, an alternative approach based 
upon Lagrangian rather than Eulerian averages. Their ‘generalized Lagrangian- 
mean ’ (GLM) equations are, in fact, a hybrid Eulerian-Lagrangian description in 
which Lagrangian-mean flow quantities satisfy equations in Eulerian form with 
position x and time t as independent variables (i.e. x replaces the usual Lagrangian 
‘labels ’ designating initial particle locations). 

The GLM formulation has helped clarify wave-related concepts such as ‘wave 
action’ and ‘pseudomomentum’ and may often provide a more-direct method of 
calculation that the Eulerian approach. For instance, Leibovich (1980) has rederived 
the so-called ‘ Craik-Leibovich equations ’ for Langmuir-vortex flows below the ocean 
surface much more briefly than in the original Eulerian version (Craik & Leibovich 
1976; Leibovich 1977). I n  essence, the Eulerian equations are less well-suited for 
handling flow quantities that  follow individual fluid particles, and so tend to conceal 
the simple role played by the Stokes drift in vortex-line deformation. Other examples 
illustrating the use of the GLM equations are given by McIntyre (1980) and Grimshaw 
(1979, 1982). 
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In the present paper we outline the basic GLM theory for growing waves in 
incompressible parallel shear flows, in the belief that  this formulation may find useful 
application. The following paper (Craik 1982) employs this formulation to investigate 
the stability of two-dimensional wavelike flows, with mean shear, to disturbances of 
‘ longitudinal-vortex ’ form. 

2. Particle paths and averages 
We first consider a two-dimensional Eulerian velocity field u = [u, 0, w] with space 

coordinates (x, y, z )  and time t .  For simplicity, attention is restricted to a constant- 
density fluid, for which continuity requires that u be solenoidal. Supposing this field 
to  comprise a primary unidirectional shear flow [ U ( z ) ,  0, 01 and a small O(e) wavelike 
disturbance along with associated terms of higher order in E ,  we write 

u(x, z ,  t )  = ~ ( z )  + Re{e$’(z) eias+ut} + O(e2) ,  (2 . la)  

w(x,  2 ,  t )  = Re{ - e i a $ ( z )  eias+ut}+ O(e2) .  (2.1 6) 

Here u = aci denotes the temporal growth or decay rate of the wave, a is its real 
wavenumber, and the reference frame has been chosen to  move in the direction of 
the primary flow with the phase speed of the wave. Note that U ( Z )  = U(z)-c,, where 
U ( z )  is the velocity profile and c, the observed phase speed in some parallel reference 
frame. When u = 0 the wave is neutrally stable and the wave profile is at rest in the 
chosen frame. The prime denotes d/dz  and $ ( z )  is the appropriate eigenfunction of 
the linearized disturbance equation, usually the Orr-Sommerfeld equation, and 
suitable boundary conditions. For rigid plane boundaries at z = z1 and z2 ,  

q5 = $’ = 0 ( 2  = 21, z 2 ) .  

If viscosity is neglected, the Orr-Sommerfeld equation is replaced by Rayleigh’s 
equation 

and the reduced boundary conditions are 

(2.2) 

q5 = 0 (2  = z,,z2). (2.3) 

(a-ic,) (q5”-d$)-U”q5 = 0, 

A fluid particle situated a t  x = (X,, Yo, 2,) a t  some initial time t = to has position 
coordinates ( X ,  Y ,  2) a t  later times t > to given by 

t 

X ( t )  = X,+JtoujX(a) ,2(n) , s lds ,  

Z(t)  = 2, + J1: w [ X @ ) ,  -w), 81 ds, 

Y( t )  = y,, 

where u(z, z ,  t ) ,  w(x ,  z ,  t )  are as given above. With just the primary flow, 

X ( t )  = x,+u(2,) (t- to) ,  2 ( t )  = 2,; 

while, to the next order of approximation, 
t 

2(t) = 2, + c Re -iaq5(Zo) e i a [ X ~ + C ( Z ~ ) s l  eus ds + O(e2)  
Jt 

( 2 . 4 ~ )  

(2.46) 

( 2 . 4 ~ )  
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If we consider a set of particles initially distributed at fixed Y,  and 2, but at all values 
of X ,  (with uniform number density), it is clear that the average position 2, taken 
with respect to  the label X,, is 2,+O(e2). On the other hand, the average position 
2 of a single particle, taken with respect to time t with fixed X,, has an O(e) 
contribution. I n  the particular case a = 0, this average is 

q5(Z0) eiaXo 
Z,+e Re { }+ O(e2) .  

aV0) 

This result reflects the fact that particles initially located a t  differing values of &, 
but the same level Z,,  do not normally lie on the same streamline. The mean levels 
of the streamlines that carry such particles lie in a band of width e~q5(2,)/~(ZO)~ 
centred on 2,. 

On proceeding to  order e2, one finds that averages of 2( t ) -Z0 and 
X(t ) -X , -a(Z , )  ( t - t o ) ,  taken with respect to X ,  for fixed Z,, are normally time- 
dependent even when u = 0. When c = 0, oscillations occur with frequency aa(2,), 
which is just the frequency with which individual particles pass successive wave 
crests. Such periodicity normally occurs when different particles of an averaged 
ensemble are located on different streamlines, or when particles on the same 
streamline are unevenly distributed between peaks and troughs. 

A non-zero mean of 2-2, a t  order e2, taken relative to X,, indicates that the 
average level of a set of particles originally a t  2, differs from 2,. Similarly, the mean 
level of an individual particle initially situated a t  (X,, Y,, 2,) typically differs from 
2,. These results are of importance in interpreting the Lagrangian-mean quantities 
of I .  For instance, the Lagrangian-mean U L ( z )  may be identified with the velocity of 
the centre of mass of a row of fluid particles that  initially extended in a straight line 
along the s-direction; but the original level of this column was generally not a t  z but 
a t  some z’ = z + O ( e 2 ) .  

In  fact, the formation of successive approximations for X and 2 in powers of e, 
by repeated substitution in the right-hand side of (2.4), leads to unnecessary 
complications when the particles to be averaged start from the same initial level 2, 
in the presence of a wave. The best way of circumventing these for growing 
disturbances (a > 0) is to  choose to = - 00 ; the particles to  be averaged then being 
initially spaced evenly along 2 = 2, when the wave amplitude is effectively zero. This 
provides an initialization satisfying postulate (viii) of I while allowing the disturbance 
to be treated as free of external forcing, a situation that permits of simplification in 
GLM theory. For neutral waves (a = 0), special difficulties are encountered in the 
vicinity of critical layers where a(z) = 0 (see I, 5 10). I n  such regions, the streamlines 
are closed ‘ cat’s eyes ’ while the averaging procedure gives simple results only for 
‘open ’ streamlines. But such difficulties are here circumvented by considering the 
limit u + 0 for growing disturbances. 

3. Stokes drift and pseudomomentum 
The Eulerian mean velocity aE and Lagrangian mean velocity aL are related by 

u L  = u E + u S ,  

where us is the generalized ‘Stokes drift ’. The difference between uE and uL was first 
recognized by Stokes (1847) in the context of water-wave theory. Andrews & 
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McIntyre’s generalization defines us in tensor form as 
-s-”  ~ 

ui - [jui, j + $5 [ k g i ,  j k  + O(e3) 

(see I, equation (2.27)) for small-amplitude waves of order O(e).  Here, Gi denotes the 
O(e)  Eulerian velocity fluctuations and ti represents the displacements of fluid 
particles from their mean positions. That is, gi and tii are quantities with zero mean. 
Commas denote partial differentiation. We shall regard the overbar as denoting 
x-averages in the sense described at the end of the preceding section, but other choices 
of averaging procedure are possible (see I, §2). The Eulerian mean up differs from 
the primary flow u by an O ( 2 )  quantity, which will be denoted by E,. 

I n  the GLM formulation, a central role is played by the pseudomomentum per unit 
mass p = pi (i = 1 , 2 , 3 ) ,  defined as 

p .  = -[. .uc 
3 , ~  3 

in non-rotating reference frames. Here u< denotes the fluctuating part of the 
Lagrangian velocity field, which is 

u$ = tii + + O(e2) 

for small-amplitude waves. For two-dimensional flows of the form (2.1), the O(e)  
Eulerian velocity fluctuations ‘lit and particle displacements ti are 

GI = E Re { $ ’ ( z )  eiax+ut}, ti2 = 0, 4, = e Re { - ia$(z) eiaz+nt}, 1 

where CT = aci. I n  view of ( 2 . 2 ) ,  the z-displacement 6, satisfies the adjoint Rayleigh 
equation 

(a-ici) ([;-ay3)+2u’[j = 0. 

The components of Stokes drift and pseudomomentum pi are, a t  O(e2) ,  

( 3 . 3 ~ )  

(3.3 b ,  c) 

(3.4a) 

where @* is the complex conjugate of $, and C.C.  denotes the complex conjugate of 
the term i t  follows. 

For neutral waves, ( 3 . 3 ~ )  gives tit = 0, at least outside the critical layer. Also, p3 = 0 
for neutral waves governed by the inviscid equation ( 2 . 2 )  ; but i t  is apparently non-zero 
for neutral waves governed by the viscous Orr-Sommerfeld equation. 

With the plane-wall boundary conditions (2.3),  

(3 .5)  

which is zero for inviscid unstratified flows. 
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For the present averaging procedure, the pseudomomentum p ,  equals Andrcws & 
McIntyre’s ‘generalized wave action’ A (see 11, $ 2  : for other averages, p ,  and A differ 
only by a multiplicative constant) and the general wave-action equation I1 (2.15) 
yields 

a t  O(s2) for inviscid flows, where j3 is the O(e)  Eulerian pressure fluctuation. It follows 
that 

J:ypldz = constant, 

and the constant is zero since p ,  = 0 a t  t = - co. This conservation of pseudo- 
momentum therefore yields 

~ 1 c , j ~ d z  = 0. (3.6) 

The well-known result that  the wave velocity c, lies within the range of the flow 

The s-component of the GLM equations (I ( 5 . 5 ~ ~ ) )  is 

22 __ 

Jz, 

velocity immediately follows. 

in the absence of viscosity and any mean pressure gradient. At O ( s 2 ) ,  this is 

where Gl is the O(c2)  Eulerian-mean velocity. Substitution of (3.3a, c) and ( 3 . 4 ~ )  leads 
immediately to 

a result customarily derived by integrating the Eulerian equation 

a, - am 
at aZ . 
- -___ - 

The net Eulerian volume flux satisfies 

J::B,dz = 0, (3.8) 

in accordance with conservation of x-momentum. It follows that a” must changc sign 
within the flow domain [zl, z,] if amplified waves exist. 

4. Pseudoenergy and the semicircle theorem 

stand for xi ( i  = 1 , 2 , 3 )  or t ,  satisfies the conservation relations 
For inviscid flows, a ‘ pseudoenergy-pseudomomentum tensor ’ T,,, where ,u and v 

Tl”, I’ = 0 

for each ,u (see 11, $5). The component T,, is the ‘pseudoenergy’ (per unit volume) 
and the components qj ( j  = 1 , 2 , 3 )  denote its flux. I n  the present case 

%t, t + z 3 , 3  = 0, 
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and so the net pseudoenergy is 

j:: T,,dz = constant, (4.1) 

since q3 vanishes on the plane boundaries z = z1 and z2. Since T,, is zero a t  t = - oc), 
net pseudoenergy is conserved, remaining identically zero for all t .  

T,, = p"e-L-L,, (4.2) 
From I1 (5.13a), 

where e = 5i,+a'u'51,tc3 = G: 

Here L = ~p"(uL+~L5)2+constant,  

is the Lagrangian per unit volume (cf. I1 (5.5)) and Lo is the 'mean-field' Lagrangian 
obtained by neglecting from L all terms explicitly containing 5 .  The reference density 
p" (cf. I (4.3) and I (9.3)) is 

p" = d1 +El, 1 < 3 , 3 - c 1 , 3  & , I ]  

= PP -4(cjck)jik+0(~3)1 (4.3) 

for the two-dimensional constant-density flows considered here. The O(e2) apparent 
density change p"-p is related to  the divergence effect noted in I that the Lagrangian- 
mean velocity is generally non-solenoidal. 

At O(e2), the pseudoenergy is found to be 

T,, = Q(cf - t2) a2m, 

and this must integrate to zero, by (4.1): accordingly, conservation of pseudoenergy 
requires that 6 (a2-c;)lr(2dz = 0. (4.4) 

This result may also be derived via the GLM 'virial theorem' (I1 (4.2)), which yields 
the inviscid result 

a t 2  

Since, from (3.2), = aZ(a2 + cf)151" 

(4.5) 

and <t,i = O(e2), integration of (4.5) leads directly to (4.4). I n  a similar way, the virial 
theorem of Eckart (1963) yields both (4.4) and (3.6) as real and imaginary parts. 

From these two conservation laws, (4.4) and (3.6), for pseudoenergy and pseudo- 
momentum, Howard's (1961) semicircle theorem is readily derived (cf. Eckart 1963). 
Since l < l z  is non-negative, a2 - cf + ha must change sign somewhere within the flow 
domain [z,, z2]  for all constants A. But ti = U -  cr in any parallel reference frame, with 
c, the observed phase speed, and we may write 

u(z) = 8( umax + urnin) + v(z) > 

where Urnax and Urnin are the respective maximum and minimum flow velocities. The 
choice h = 2c,- Urnax- Umin leads immediately to the result that  

v2 - [Cr - +( urn,, + Umin)]2 - cf 

[cr - 8( umax + Urnin)]' + ~f < [i( umax - Umin ) I2 ,  

must change sign in [2, ,2,] .  On setting v2 equal to its greatest-possible value, it follows 
that 
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and the semicircle theorem is proved. A similar proof may be constructed for 
compressible and density-stratified flows (Eckart 1963). 

5. Mass flux and energy 
Since the net Eulerian and Lagrangian mean mass fluxes must be equal, 

and so, at O ( e 2 ) ,  {::[(P-p)u+p@]d~ = 0. 

On using (3.5), it follows that, at O(c2) ,  

[: ( p - p )  u d z  = 0 

for inviscid unstratified flows. Also, from (4.3), 

at 0 ( c 2 ) ,  in accordance with conservation of mass. 
Since there is no potential energy, the Lagrangian L may be regarded as the energy 

per unit volume of a fluid particle. The total mean change in L due to the disturbance 
is L - L,  where L,  = @u". Accordingly, 

L-L,  = pu(~+~,)+~(p--p)~~+~-p(D")~+0(~4), 

L-L, = & $ F < ) 2 + 0 ( ~ 4 ) .  

Since total energy is conserved, 

Since the total Eulerian-mean and GLM energies must be equal, the Eulerian-mean 
energy is also conserved. Therefore 

where 

is the mean kinetic energy per unit span associated with the Eulerian fluctuations, 
and the second term denotes the kinetic-energy change of the mean flow. 

I n  any parallel reference frame, with ti = U-c,,  the corresponding total Eulerian- 
mean energy is 

E + p f 2  El U d z =  p c , ~ ~ ~ Z , d r ,  

which is likewise zero by virtue of (3.8). That is to say, spontaneously growing 
disturbances in inviscid flows have zero total Eulerian-mean energy and pseudoenergy , 
whatever the reference frame. 

In  contrast, disturbances initiated by application of external forces may have 
positive or negative energy (cf. Cairns 1979; Craik & Adam 1979). For stratified flows 
and those with a free surface, there are neutrally stable modes that can only be 
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created in this way: their pseudoenergy and energy is non-zero. Consideration of 
pseudoenergy, rather than energy, in such cases is likely to be advantageous, for T,, 
may be evaluated without knowledge of the O(e2) Eulerian-mean velocity TI. In  
particular, the Eulerian formulation encounters difficultlies in dealing with stratified 
shear flows (absent for the piecewise-constant profiles of , i ~  and p considered by Cairns 
and by Craik & Adam). No great difficulties appear in the GLM approach unless for 
neutral modes with critical layers where u = 0. 

6. Pseudoenergy flux in viscous flows 
The tensor component Tt3 is 

T t 3  = @P"e +P%n, t K m 3  

in the notation of 11, equation (5 .13b) .  This equals the flux (in the z3 direction) of 
pseudoenergy. For neutral waves, the displacements < are independent of time in the 
present reference frame and both z3 and e are then zero. 

I n  any parallel reference frame, u = U - c , .  Since ukp"e is O(e4) a t  most, 
~ 

T t 3  = $63, t 

$ = ep Re{ [ (c  - U )  #' + U'#] eia(z-ct) 1 a t  O(e2), where 

is the Ole) Eulerian pressure fluctuation and c = c, + ic, is the complex wave velocity 
in the chosen frame. Since 

& t  = e Re { iac(  U-c)- l#  

q3 = :€2iaC,p(#'#* - #*'#) 
1, 

(6.1) 
~ 

for neutral waves. This is just -c,r where r = -pti1ti3 is the Reynolds stress. For 
wholly inviscid flows, q3 is zero everywhere for neutral waves. 

I n  flows with small viscosity, leading-order viscous effects are confined to thin 
layers near the walls and close to critical layers. I n  the intervening inviscid regions, 
the expression (6.1) remains valid. For neutral waves, this represents a constant flux 
of pseudoenergy from critical layer to viscous wall layer, where energy is dissipated 
and pseudoenergy is dissipated or released. On the other hand, in the rest frame of 
a neutral wave, q3 is identically zero, since the phase velocity is zero. I n  this frame, 
all the work done to sustain the disturbance against viscous dissipation derives from 
an O(e2) wall shear stress, provided that there is no O ( 2 )  mean pressure gradient. The 
rate-of-working per unit wall area is then times the (apparent) wall velocity. 

7. Discussion 
The GLM theory provides alternative physical insights, which complement the 

more familiar Eulerian formulation of the theory of hydrodynamic stability. The 
meanings of the wave-related concepts of Stokes drift, pseudomomentum and 
pseudoenergy have been illustrated for homogeneous flows, and various results 
established. In  particular, some known results of linear stability theory, including 
the semicircle and inflexion-point theorems, were concisely rederived from the GLM 
equations and conservation laws. 

Since the GLM equations succinctly express convective processes that tend to be 
obscured in the Eulerian form, considerable savings of effort may sometimes accrue 
from using the GLM approach. This paper has described the necessary framework 
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for cases of strong mean shear flow. A particular nonlinear application is given in the 
following paper (Craik 1982), which considers a novel type of instability in the form 
of spanwise-periodic longitudinal vortices. I n  that paper, a further appreciation is 
gained of the power and limitations of the GLM formulation. 

I am grateful to Dr M. E. McIntyre for his interest and for many helpful comments. 
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